Lightstream Screw

AIR-COOLED CHILLERS WITH INVERTER COMPRESSORS

500-1400kW

- HIGH FULL AND PART LOAD EFFICIENCY
- ▶ DEMAND-RESPONSIVE INVERTER COMPRESSORS
- REFRIGERANTS R134A, LOW-GWP R1234ZE

WWW.KALTRA.COM

In the midst of innovative technologies

LIGHTSTREAM SCREW INVERTER CHILLERS OFFER AN ULTIMATE PERFORMANCE AND EFFICIENCY AT BOTH FULL AND PARTIAL LOADS BY COMBINING A SET OF INNOVATIVE TECHNOLOGIES: INTELLIGENT CONTROLS, INVERTER-CONTROLLED SCREW COMPRESSORS, EC FANS, MICROCHANNEL HEAT EXCHANGERS, AND CLOSE APPROACH EVAPORATORS.

The benefits at a glance:

- ► ENERGY EFFICIENCY RATIO UP TO 3.56
- ESEER UP TO 5.75
- CAPACITY ON DEMAND
- INTELLIGENT HEAD PRESSURE CONTROL
- HIGH EVAPORATION TEMPERATURES
- **ECO-FRIENDLY ERFRIGERANT R1234ZE**

ESEER OF UP TO

Intelligent controls

Centralized, accurate thermal control

The control hub of Lightstream Screw Inverter chillers is a sophisticated controller with advanced software developed for efficient operation of air-cooled chillers. It manages and optimizes the chiller's performance, giving the complete control over the system for plant operator.

Control software can be directly linked to the existing building management system. Integration with a BMS allows collecting and analyzing operating data of chilled water plant and helps to maintain optimal equipment settings, save energy, identifies trouble-prone areas, provides maintenance schedules and generate safety and security alarms.

For the efficient operation of multiple units on a single chilled water plant, the sequencing software permits interlinked operation of the complete system, thus providing optimal temperature control and minimal energy consumption.

Exact capacity match

Frequency-controlled screw compressors

The compressors of Lightstream Screw Inverter series chillers is a unique development in the field of compact screw compressors, designed for capacity control and optimized for use in air-cooled liquid chillers. These compressors are especially suitable for systems that repeatedly operated under part-load and feature an integrated frequency inverter which controls the motor speed – enabling infinite capacity control for customers and optimal energy use for applications.

These compressors also achieve impressively high full-load efficiency and significantly improved ESEER and SCOP values: with an average ESEER value of 5.62, Lighstream Screw Inverter chillers are setting new benchmarks in the industry.

The compressors monitor its own application limits and communicate via Modbus with the master system controls. The integrated data log can be used at any time to analyze operation over the running time and optimize the system settings.

Lightstream Screw Inverter

KALTRA Kaltra Innovativtechnik GmbH MaxReger Str. 44-90571 Schwaig - Germany infogkaltrade 1 + 4909171 / S 2021

Condensing coils

Microchannel heat exchangers

Microchannel condensers used in Lighstream Screw Inverter design give a number of advantages, including higher heat transfer rate, low airside pressure drops, and closer approach temperatures. The end result is up to 40% higher energy efficiency in comparison to traditional fin/tube heat exchanger design.

Smaller coil face, thin design, up to 50% less weight, and less refrigerant charge translate to lower system cost. Microchannel condensers used in Lightstream Screw Inverter chillers are true HVAC coils developed and optimized especially for refrigeration applications and enable remarkable low condensing temperatures.

Evaporators

Flooded-type heat exchangers

The design of the Lightstream Screw Inverter evaporators provides optimum system efficiency at both full and partial load operation. The tubes in flooded evaporator are fully immersed in liquid refrigerant and enable a smaller approach temperature between the refrigerant temperature in its shell and chilled water temperature in the tubes to be achieved. The refrigerant pool behaves as a flywheel, allowing the controls of the flooded evaporator to track the varying load of a batch process, while optimized tube geometry ensures optimal refrigerant distribution.

With flooded evaporator, the compressors operate at higher saturated evaporation temperature and generate more cooling capacity with the same power input.

25% energy savings through the use of EEV

The electronic expansion valve (EEV) reduces the need for high head pressure when running at part load and lower ambient conditions. EEV is controlled by a driver which regulates its opening according to the performance levels required by the system and guarantees the minimal overheating under all operating conditions.

Intelligent fan system

EC-type fans with reduced power consumption

EC motors use commutation electronics to sense the rotor position and adjust supply current, thus eliminating the need for mechanical brushes to deliver current to the motor windings. Elimination of physical contact reduces internal wear within the fan motor and significantly increases reliability.

EC motor technology does not provide savings only during full-load operation - it is exactly when operating under partial load that EC motors lose much less of their efficiency compared to AC fans.

Our new generation fan system not only reduces power consumption by up to 30% while efficiently managing the extraordinarily high volume flows – it also works at much reduced operating noise. The smart fan system includes the unique fan impellers with bionic wing concept, the most advanced EC motor technology, and multifunctional air diffusers, resulting in an extra economic efficiency for the customers.

Low-GWP refrigerant option

Refrigerants with low global warming potential (GWP) are becoming more and more important in the refrigeration and air conditioning industry in Europe and beyond.

Recently developed R1234ze refrigerant features low global warming potential and zero ozone depletion potential and fulfills EU regulatory requirements for reducing the use of high global warming potential (GWP) substances. At the same time, R1234ze almost exactly matches the efficiency of R134a.

With low-GWP refrigerants, Lightstream Screw Inverter chiller is the environmentally-friendly leader of the range, while achieving the best energy performance levels for applications.

Fan motors efficiency comparison

Lightstream Screw Inverter

Package, options and accessories

General						
Soundproof compressor enclosures		Anti-vibration mounts		Mesh guards for coils		
Low noise design (grades 1 to 3)		Anti-vibration springs		Partial heat recovery system		
E-coated condenser coils		High-ambient kit		Total heat recovery system		
Hi-sided paneling		Brine kit (to -10°C)		Thermal insulation		
Waterside						
External pump control	ternal pump control			Grooved water connections		
Pump 1x fixed-speed, 2-pole motor, low head	1x fixed-speed, 2-pole motor, low head			Pump 2x fixed-speed, 4-pole motor, low head		
Pump 1x fixed-speed, 2-pole motor, high head		Pump 2x fixed-speed, 2-pole motor, high head		Pump 2x fixed-speed, 4-pole motor, high head		
Pump 1x variable-speed, 2-pole motor, low head	ump 1x variable-speed, 2-pole motor, low head			Pump 2x variable-speed, 4-pole motor, low head		
Pump 1x variable-speed, 2-pole motor, high head		Pump 2x variable-speed, 2-pole motor, high head		Pump 2x variable-speed, 4-pole motor, high head		
Refrigerant side						
Oil cooling system		Evaporator immersion heater		Gas leakage detection		
Oil pumping system		Flooded shell-and-tube evaporator		Pressure indication on high/low sides		
Electronic expansion valves		Safety valves on high/low sides		Compressor backflow prevention valves		
Airside						
AC fans		EC fans		High-efficient fan diffusers		
Electric and controls						
Touch screen HMI		Dual power supply w/ ATS		Sequence management		
Electric panel heater		BMS connectivity		Compressor operation indication	- -	
Compressor power factor capacitor		SNMP connectivity		Remote monitoring software		
Energy monitoring		GSM connectivity		Controller power backup		
Automatic circuit breakers on loads		Quick restart		Electrical panel lighting w/ 230V socket		
Phase sequence control		Electric heater for pump(s)		Electrical panel heater		

Standard feature

Optional feature

Model identification

Frame sizes

Frame size		F5	F6	F7	F8	F9	F10	F11	F12
Length	mm	5655	6825	7740	8910	9825	10995	11910	13080
Width	mm	2250	2250	2250	2250	2250	2250	2250	2250
Height	mm	2550	2550	2550	2550	2550	2550	2550	2550

Grooved connections

We use a piping system with grooved couplings because of its rigidity, flexibility, noise and vibration attenuation, and ease of installation and maintenance. The groove is made by cold forming or machining a groove into the end of a pipe. A gasket encompassed by the coupling housing is wrapped around the two grooved pipe ends, and the key sections of the coupling housing engage the grooves. The bolts and nuts are tightened with a socket wrench or impact wrench.

Lightstream Screw Inverter

Technical Specifications

Lightstream Screw Inverter		V450	V500	V550	V550			V700	V750	V800	
		W5/2	W5/2	W5/2	W6/2	W6/2	W6/2	W6/2	W6/2	W7/2	
Frame size										F7	
Cooling capacity ¹	kW	475	495	535	565	615	645	675	710	780	
Energy efficiency (EER)	kW/kW	3.49	3.49	3.44	3.50	3.46	3.52	3.48	3.42	3.50	
ESEER	kW/kW	5.45	5.47	5.56	5.42	5.52	5.60	5.65	5.75	5.62	
Power input	kW	133.0	139.0	153.0	157.8	173.8	180.8	190.8	203.8	218.6	
Absorbed current	А	221	230	250	264	288	298	313	333	360	
Net weight	kg	4420	4590	5085	5100	5425	5605	5610	6605	6800	
Compressors		Inveter-driven screw compressors									
Quantity		2	2	2	2	2	2	2	2	2	
Power input	kW	114.0	120.0	134.0	135.0	151.0	158.0	168.0	181.0	192.0	
Absorbed current	А	173	182	202	206	230	240	255	275	293	
Fans					,	AC-motor axial fans					
Quantity		10	10	10	12	12	12	12	12	14	
Airflow	m³/h	240000	240000	240000	288000	288000	288000	288000	288000	336000	
Power input	kW	19.0	19.0	19.0	22.8	22.8	22.8	22.8	22.8	26.6	
Absorbed current	А	48.0	48.0	48.0	57.6	57.6	57.6	57.6	57.6	67.2	
Evaporator		Flooded shell-and-tube									
Water flow	m³/h	82	85	92	97	105	112	116	122	134	
Water volume	L	87.7	92.6	99.2	107.2	115.2	121.8	130.0	130.0	142.8	
Refrigeration circuits	R134a										
Quantity		1	1	1	1	1	1	1	1	1	
Charge	kg	246	312	312	312	312	306	382	382	382	

(1) Fluid: water 100%; Fluid inlet/outlet temperatures: 15/10°C; Ambient temperature: 35° C

Lightstream Screw Inverter		V850	V900	V950	V1000	V1100	V1150	V1200	V1300	V1350	
		W7/2	W8/2	W8/2	W9/2	W10/2	W10/2	W11/2	W11/2	W12/2	
Frame size					F9					F12	
Cooling capacity ¹		820	890	950	1025	1100	1150	1225	1285	1355	
Energy efficiency (EER)	kW/kW	3.46	3.49	3.47	3.50	3.56	3.44	3.44	3.40	3.46	
ESEER		5.72	5.64	5.72	5.67	5.63	5.70	5.65	5.72	5.65	
Power input		232.6	250.4	265.4	287.2	303.0	330.0	351.8	371.8	385.6	
Absorbed current		381	411	435	471	500	540	578	609	632	
Net weight	kg	6800	7425	8025	8650	9000	9200	9425	9425	9765	
Compressors		Inveter-driven screw compressors									
Quantity		2	2	2	2	2	2	2	2	2	
Power input		206.0	220.0	235.0	253.0	265.0	292.0	310.0	330.0	340.0	
Absorbed current	А	314	334	358	385	404	444	472	503	517	
Fans						AC-motor axial fans					
Quantity		14	16	16	18	20	20	22	22	24	
Airflow	m³/h	336000	384000	384000	432000	480000	480000	528000	528000	576000	
Power input		26.6	30.4	30.4	34.2	38.0	38.0	41.8	41.8	45.6	
Absorbed current	А	67.2	76.8	76.8	86.4	96.0	96.0	105.6	105.6	115.2	
Evaporator	Flooded shell-and-tube										
Water flow	m³/h	142	154	162	176	190	198	210	220	233	
Water volume	L	156.0	164.0	172.0	190.0	199.8	216.0	225.6	235.5	245.2	
Refrigeration circuits R134a											
Quantity		1	1	1	1	1	1	1	1	1	
Charge	kg	460	460	460	460	460	535	535	530	530	

(1) Fluid: water 100%; Fluid inlet/outlet temperatures: 15/10°C; Ambient temperature: 35°C

The development of Kaltra products and services is continuous and the information in this document may not be up to date. Please check the current position with Kaltra.

Kaltra Innovativtechnik GmbH Max:Reger-Str. 44 • 90571 Schwaig • Germany info@kaltra.de +49(0)911 715 32021

Lightstream Screw Inverter